skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fahey, Catherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The tree diversity-productivity relationship is key to effective forest restoration and management; however, it remains unclear what role foliar chemical diversity and interactions between trees and their enemies play in driving this relationship. Trees produce chemical metabolites in their leaves that impact herbivory and pathogen infection. If trees alter the diversity of metabolites they produce when grown in more diverse communities, this could impact interactions with herbivores and pathogens. Ultimately, these tropic interactions with plant enemies, mediated by chemical diversity, could be important drivers of diversity-productivity relationships. Using a large-scale tree diversity experiment, we used a focal tree sampling design from 14 species across a gradient of tree species richness to assess the role of foliar chemicals and trophic interactions in the diversity-productivity relationship. We used untargeted metabolomics to measure foliar phytochemical diversity, monitored tree-enemy interactions, including foliar fungal pathogens, caterpillar communities, and deer browsing, and modelled their relationship to tree growth using path analysis. We unraveled significant evidence for top-down mediation of the diversity-productivity relationship driven primarily by herbivores rather than foliar pathogens, and contrasting effects of foliar chemical diversity on different enemy types. Individual trees growing in more diverse communities had higher phytochemical diversity and higher caterpillar richness, but lower leaf fungal pathogen richness. Leaf phytochemical diversity was positively associated with caterpillar richness and fungal pathogen richness, but negatively associated with browsing by white-tailed deer (Odocoileus virginianus). Path analysis revealed that phytochemical diversity, caterpillar richness, insect damage, and deer damage – but not foliar pathogens – all mediated positive indirect effects of tree richness on tree growth rate. Synthesis: We highlight the significant mediation of diversity-productivity relationships via contrasting effects of phytochemical diversity on plant-enemy interactions. Ultimately, our study underscores the importance of incorporating trophic interactions into biodiversity-ecosystem function studies. 
    more » « less
  2. Free, publicly-accessible full text available April 1, 2026
  3. Abstract Forest canopy complexity (i.e., the three‐dimensional structure of the canopy) is often associated with increased species diversity as well as high primary productivity across natural forests. However, canopy complexity, tree diversity, and productivity are often confounded in natural forests, and the mechanisms of these relationships remain unclear. Here, we used two large tree diversity experiments in North America to assess three hypotheses: (1) increasing tree diversity leads to increased canopy complexity, (2) canopy complexity is positively related to tree productivity, and (3) the relationship between tree diversity and tree productivity is indirect and driven by the positive effects of canopy complexity. We found that increasing tree diversity from monocultures to mixtures of 12 species increases canopy complexity and productivity by up to 71% and 73%, respectively. Moreover, structural equation modeling indicates that the effects of tree diversity on productivity are indirect and mediated primarily by changes in internal canopy complexity. Ultimately, we suggest that increasing canopy complexity can be a major mechanism by which tree diversity enhances productivity in young forests. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Summary That arbuscular mycorrhizal (AM) fungi covary with plant communities is clear, and many papers report nonrandom associations between symbiotic partners. However, these studies do not test the causal relationship, or ‘codependency’, whereby the composition of one guild affects the composition of the other. Here we outline underlying requirements for codependency, compare important drivers for both plant and AM fungal communities, and assess how host preference – a pre‐requisite for codependency – changes across spatiotemporal scales and taxonomic resolution for both plants and AM fungi. We find few examples in the literature designed to test for codependency and those that do have been conducted within plots or mesocosms. Also, while plants and AM fungi respond similarly to coarse environmental filters, most variation remains unexplained, with host identity explaining less than 30% of the variation in AM fungal communities. These results combined question the likelihood of predictable co‐occurrence, and therefore evolution of codependency, between plant and AM fungal taxa across locations. We argue that codependency is most likely to occur in homogeneous environments where specific plant – AM fungal pairings have functional consequences for the symbiosis. We end by outlining critical aspects to consider moving forward. 
    more » « less